Product Information Packet

Model AHP-1800XP

Solid State, NEMA 4X, Class I Div 2,
Air Conditioner with TC-1F Temperature Control

Part #0-01F0-2-002

Thank you for your purchase. Information has been enclosed regarding the installation, specifications, and wiring of your solid-state assembly. Please read and follow all instructions carefully before installation. Only qualified technicians should install this equipment.

If you have any questions regarding your equipment, please do not hesitate to call us at 773-342-4900, and we will be happy to assist you. We are open from 8:00 am-4:30 pm Central Time.

Included in this packet you will find:

Installation Notes for Air Conditioners
Product Literature and Specifications
Assembly Drawing # 1800-B-A18
Wiring Drawing # SK170909
Installation Drawing # 1800-A-F52
Temperature Control Information
Warranty Information
Important Installation Notes for Air Conditioners

Mounting Styles: Both ‘thru mount’ and ‘flush mount’ units can be positioned in any orientation and on any enclosure surface. It is important to consider interior air flow patterns when determining the mounting location. Also of importance is an unrestricted flow of ambient air thru the hot side heat exchanger. Ease of access and inspection must be considered for those applications in particularly severe environments which may require occasional maintenance.

Vertical (Side/Front/Back) Mounting: Vertical mounting refers to the vertical direction of the cold side or interior fins and is recommended for applications with high humidity, poor and incomplete cabinet seals or any condition which may cause the cold side fins to be maintained at temperatures below the dew point for long periods of time allowing for the formation of condensation. The vertical fin direction provides a drip path whereupon condensation can be collected via a moisture removal system (standard on FHP-units) or a drip pan positioned below the cold side fins. Drip pans are optional for thru mount units.

Condensate Removal System: All FHP-Series and AHP-1400 air conditioners contain a built-in condensate removal system. The condensate kit consists of a antifungal sponge with a condensate wick. PVC tubing is also provided for drainage. Drip pans are optional for thru mount units which must be evaluated on an individual basis. Equations defining a relationship between the cold side fin and enclosure temperatures are provided to assist in the evaluation.

Top Mounting: Though often the easiest location to mount it is often the most difficult to protect from condensation in this orientation due to the fin orientation, gravity and any susceptible components below. If a drip pan is employed by the end user use caution to place the pan far enough away from the internal fan to minimize the restriction of air flow. The pan should cover the fin ends as well as the fan area. When there is a choice, the vertical orientation is preferred by most users.

Maintenance: Since the technology is solid-state, there are no filters, compressors, or fluorocarbons to maintain. The only moving parts are the fans. It is recommended for harsh or dirty environments that the heat sinks be cleaned from time to time. This can be accomplished by directing compressed air over the external fins or on NEMA 4 versions by hosing the unit down. This will increase the overall life and performance of the system.

Cautions: Take care when mounting not to damage the seal between the hot and cold side sinks. Do not attempt to mount a unit to a warped surface or try to make the units mounting surface conform to an unflat surface. Do not pinch or damage any leads when mounting. Do not over tighten any installation screw, use reasonable force. Always mount with any condensate drain down. Do not compress the cold side between the hot side and any other surface. Do not obstruct the airflow on either side. When mounting consider the natural air flows of the enclosure. Connect power only after the installation is complete.

Notes on condensation: Condensation occurs at the cold side fins when the surface temperature goes below the dew point. To reduce or remove condensate, consider the following:
• Regulate the Fin Temperature above the Dewpoint.
• Keep Enclosure Closed and Sealed from Outside Humidity.
• Use Desiccant (Moisture absorbing Granules.)
• Employ Condensate Removal System/Drip Pans.

If you have any questions regarding your installation, Please feel free to contact our technical department for assistance at 773-342-4900.
AHP-1800 Hazardous Location Air Conditioner

Air Cooled
Through Mounted
NEMA-12, 4X, Class I Div 2

FEATURES
• Compact, (18” L X 12.35” W X 9.69”D)
• Excels in high ambient temperatures
• Environmentally Safe
• Dual voltage versions available, consult factory.
• No compressor, fluorocarbons or filters
• Virtually maintenance-free operation
• Stainless steel exterior housing
• Versions to withstand corrosive environments, shock and vibration
• Mounts and operates in any orientation
• Groups A, B, C, D
• Easy to use Pivot Clean feature
• Agency approvals: UL 1604, UL 1995, CSA 22.2

INCLUDES
• Adjustable temperature control
• Mounting gasket and hardware
• Power input line cord

OPTIONS
• Other temperature settings for single set point controls

SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PART NUMBER</th>
<th>VOLTAGE VAC 50/60 HZ</th>
<th>CURRENT AMPS</th>
<th>WEIGHT LBS (KG)</th>
<th>TEMP CONTROL</th>
<th>OPERATING AMBIENT TEMPERATURE RANGE °C</th>
<th>OPERATING ENCLOSURE TEMPERATURE RANGE °C</th>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP-1800EP</td>
<td>0-0180-0-002</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>TC-6F</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1800EP</td>
<td>0-0170-0-002</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>TC-1F</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1800EP-1</td>
<td>0-0170-0-004</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>EXT*</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1800EPHC-1</td>
<td>0-0130-1-003</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>TC-3F</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1801EP</td>
<td>0-0181-0-002</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>TC-6F</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1801EP</td>
<td>0-0171-0-002</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>TC-1F</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1801EP-1</td>
<td>0-0171-0-006</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>EXT*</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1801EPHC-1</td>
<td>0-0131-1-003</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>TC-3F</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1801EPHC-1</td>
<td>0-0131-1-006</td>
<td>120</td>
<td>8.0</td>
<td>46(21)</td>
<td>EXT*</td>
<td>-40/+63</td>
<td>-10/+60</td>
<td>NEMA-12</td>
</tr>
<tr>
<td>AHP-1800XP</td>
<td>0-0180-2-002</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>TC-6F</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1800XP</td>
<td>0-0170-2-002</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>TC-1F</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1800XP-1</td>
<td>0-0170-2-004</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>EXT*</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1800XPHC</td>
<td>0-0130-3-003</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>TC-3F</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1800XPHC-1</td>
<td>0-0170-3-006</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>EXT*</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1801XP</td>
<td>0-0181-2-002</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>TC-6F</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1801XP</td>
<td>0-0171-2-002</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>TC-1F</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1801XP-1</td>
<td>0-0171-2-005</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>EXT*</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1801XPHC</td>
<td>0-0131-3-003</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>TC-3F</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
<tr>
<td>AHP-1801XPHC-1</td>
<td>0-0171-3-004</td>
<td>120</td>
<td>8.0</td>
<td>47(21.4)</td>
<td>EXT*</td>
<td>-40/+75</td>
<td>-10/+60</td>
<td>NEMA-4X</td>
</tr>
</tbody>
</table>

* Unit is set for 5-32 VDC external signal, relay(s) included

Consult factory for shock and vibration models

TECA 1-888-TECA-USA (832-2872) www.thermoelectric.com
Equation of line: \(y = \Delta T(\degree \text{C}) \) x=Capacity (Watts)

<table>
<thead>
<tr>
<th>Ambient Temp</th>
<th>20°C</th>
<th>40°C</th>
<th>60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure Air</td>
<td>(y = 0.122x - 37.0)</td>
<td>(y = 0.122x - 39.7)</td>
<td>(y = 0.122x - 42.3)</td>
</tr>
<tr>
<td>Cold Sink</td>
<td>(y = 0.09x - 37.0)</td>
<td>(y = 0.09x - 39.7)</td>
<td>(y = 0.09x - 42.3)</td>
</tr>
</tbody>
</table>

Dimensions

Input Power Cable
- 12.35 [314] *

External Hot Side Fans
- 18.00 [457]

Mounting Surface
- 18.46 [468] *

Temperature Adjustment
- (TC-6F models only)
- 8.63 [219]

Circuit Breakers (VAC models only)
- 5.45 [138]

Terminal Strip (1801 models only)
- 4.34 [110]

MOUNTING CUTOUT DIMENSIONS

- 10.90 [277]
- 1.34 [34]
- 1.34 [34]

PERFORMANCE CURVE

- Cooling Capacity (BTU/HR)
- Temperature Differential (°C)

AHP-1800EP

Mounting Style
- Through Mounted

Environments Served
- Class I Div 2 NEMA-12 IP 52
- Class I Div 2 NEMA-4X IP 56

Rating (Traditional)
- 1100 BTU/hr @ 0 °F \(\Delta T \)
- 1420 BTU/hr @ +20 °F \(\Delta T \)

Rating (DIN 3168)
- 322 Watts L35 L35
- 210 Watts L35 L50

Air Flow Pattern
Mounting, Monture, Montage, Montaggio

Endosure, Armoire, Gehäuse, Armadi

Cord, Cable, Kabel, Cable

Gasket, Joint, Dichtung, Guarnizione

Exhaust, Echappement, Abluft, Scarico

Intake Air, Air d'entrée, Einlaßluft, Aria di presa

Insulation, Isolation, Isolierstoff, Isolamento

Exhaust, Echappement, Abluft, Scarico

Alternate, Alternative, Alternative, Alternativa

Dimensions: Inches [Millimeters]

5.45 [138.4]
4.34 [110.2]
1.34 [34.0]

8.45 [214.6]
8.63 [219.2]

Ø0.22 [Ø5.5]

Warning: This equipment is suitable for use in Class I Division 2, Groups A, B, C, D or Non-Hazardous locations only.

Warning: Explosion Hazard - Substitution of components may impair suitability for Class I, Division 2.

Avertissement - Risque D'Explosion - La substitution de composants peut rendre ce matériel inacceptable pour les emplacements de Classe I, Division 2.

Achtung - Explosionsgefähr - Das Austauschen von Komponenten kann die Eignung für Klasse I, Division 2 beeinträchtigen.

Attenzione - Pericolo di esplosione - La sostituzione di componenti può compromettere la classe I, Divisione 2.

THURMOELECTRIC COOLING AMERICA CORP.

AHP-1800EP / AHP-1800XP SERIES
TYPICAL FIELD MOUNTING

INFORMATION DISCLOSED HEREIN IS THE CONFIDENTIAL PROPERTY OF TECO CORP. RECIPIENT SHALL NOT USE THE INFORMATION IN ANY UNAUTHORIZED MANNER

DIGITALS ANGLE +/- FRACTION +/-

MATERIAL:

REV DESCRIPTION Date APPROVED
09/01/2011 AA

DRAWN BY: AA DRAWING # 1800-A-F52
DATE: 05/23/2011 REU LEVEL A
D8090 SCALE MASTER MASTER SHEET
Power Temperature Controllers

TC-1F POWER TEMPERATURE SWITCHES

Models TC-1F power temperature controller, with small tolerance and reset differential, are the simplest and most cost effective way to control a cooling or heating device (VAC or VDC) without a need for a relay. For circuits that have higher current draw simply use them in conjunction with a solid state relay.

<table>
<thead>
<tr>
<th>Model</th>
<th>Part Number</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool</td>
<td>TC-1C-XX</td>
<td>switch closes on temperature rise</td>
</tr>
<tr>
<td>Heat</td>
<td>TC-1H-XX</td>
<td>switch closes on temperature drop</td>
</tr>
</tbody>
</table>

Example: TC-1C-20 and TC-1H-10

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>CURRENT AMP</th>
<th>SET POINT TEMP</th>
<th>TEMPERATURE DIFFERENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 VAC</td>
<td>2</td>
<td>+/- 3</td>
<td>3 - 6</td>
</tr>
<tr>
<td>250 VAC</td>
<td>1.3</td>
<td>+/- 3</td>
<td>3 - 6</td>
</tr>
<tr>
<td>12 VDC</td>
<td>2</td>
<td>+/- 3</td>
<td>3 - 6</td>
</tr>
<tr>
<td>24 VDC</td>
<td>1.3</td>
<td>+/- 3</td>
<td>3 - 6</td>
</tr>
</tbody>
</table>

TC-4F COOL ONLY WITH ECO-MODE

Model TC-4F is similar to TC-1F plus it has a 2nd power switch for heat exchanger mode (ECO-Mode). The active cool set point for TC-4F is 35 °C and for heat exchanger mode (ECO-Mode) is 25 °C.

<table>
<thead>
<tr>
<th>Model</th>
<th>Part Number</th>
<th>Notes</th>
<th>T1-T2 (MAX)</th>
<th>T1-T2 (TYP)</th>
<th>OPERATING VOLTAGE</th>
<th>SWITCHING VOLTAGE</th>
<th>ACTIVE MODE</th>
<th>ECO-MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-4F-DC</td>
<td>4F-24D-00-000</td>
<td>12/24/48 VDC</td>
<td>25 +/- 3</td>
<td>35 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>12/24/48 VDC</td>
<td>0-100 VDC</td>
</tr>
<tr>
<td>TC-4F-DC</td>
<td>4F-24D-00-001</td>
<td>12/24/48 VDC</td>
<td>25 +/- 3</td>
<td>35 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>12/24/48 VDC</td>
<td>0-100 VDC</td>
</tr>
<tr>
<td>TC-4F-DC</td>
<td>4F-24D-00-002</td>
<td>12/24/48 VDC</td>
<td>25 +/- 3</td>
<td>35 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>12/24/48 VDC</td>
<td>0-100 VDC</td>
</tr>
</tbody>
</table>

Dimensions: Inches [Millimeters]

TC-6F COOL ONLY

Model TC-6F (Cool Only) thermostat is designed using two temperature power switches in conjunction with a solid state relay. A three position switch is provided to adjust temperature settings.

<table>
<thead>
<tr>
<th>Model</th>
<th>Part Number</th>
<th>Notes</th>
<th>Temp @ T1 °C</th>
<th>Temp @ T2 °C</th>
<th>T1-T2 (MAX)</th>
<th>T1-T2 (TYP)</th>
<th>OPERATING VOLTAGE</th>
<th>SWITCHING VOLTAGE</th>
<th>ACTIVE MODE</th>
<th>ECO-MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-6F</td>
<td>6F-00A-00-000</td>
<td>No Relay</td>
<td>35 +/- 5</td>
<td>25 +/- 5</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>Continuous On</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TC-6F-AC</td>
<td>6F-03T-00-000</td>
<td>VAC Version</td>
<td>35 +/- 5</td>
<td>25 +/- 5</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>Continuous On</td>
<td>85-250 VAC</td>
<td>24-280 VAC</td>
</tr>
<tr>
<td>TC-6F-DC</td>
<td>6F-41D-00-000</td>
<td>12/24 VDC</td>
<td>35 +/- 5</td>
<td>25 +/- 5</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>Continuous On</td>
<td>12/24 VDC</td>
<td>0-100 VDC</td>
</tr>
<tr>
<td>TC-6F-DC</td>
<td>6F-33D-00-000</td>
<td>48 VDC</td>
<td>35 +/- 5</td>
<td>25 +/- 5</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>Continuous On</td>
<td>48 VDC</td>
<td>0-100 VDC</td>
</tr>
</tbody>
</table>

TC-3F HEAT AND COOL

Model TC-3F (Heat/Cool) thermostat incorporates the same technology as the TC-6F. It contains a single setting each for both heating and cooling as referenced below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Part Number</th>
<th>Notes</th>
<th>Cool Temp °C</th>
<th>Heat Temp °C</th>
<th>T1-T2 (MAX)</th>
<th>T1-T2 (TYP)</th>
<th>OPERATING VOLTAGE</th>
<th>SWITCHING VOLTAGE</th>
<th>CURRENT AMP</th>
<th>CURRENT AMP</th>
<th>H-BRIDGE RELAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-3F-AC</td>
<td>3F-04R-00-000</td>
<td>VAC Version</td>
<td>35 +/- 5</td>
<td>15 +/- 5</td>
<td>6.5</td>
<td>3</td>
<td>85-280 VAC</td>
<td>24-280 VAC</td>
<td>10 AMPS</td>
<td>NA</td>
<td>N/A</td>
</tr>
<tr>
<td>TC-3F-DC</td>
<td>3F-44G-00-000</td>
<td>12/24 VDC</td>
<td>35 +/- 5</td>
<td>15 +/- 5</td>
<td>6.5</td>
<td>3</td>
<td>3.5-32 VDC</td>
<td>0-100 VDC</td>
<td>20 ADC</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TC-3F-DC</td>
<td>3F-44P-00-000</td>
<td>12/24 VDC</td>
<td>35 +/- 5</td>
<td>15 +/- 5</td>
<td>6.5</td>
<td>3</td>
<td>3.5-32 VDC</td>
<td>0-100 VDC</td>
<td>20 ADC</td>
<td>Solid State</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TC-7F HEAT/COOL WITH ECO-MODE

Model TC-7F (Heat/Cool) thermostat incorporates the same technology as the TC-3F. It contains a single setting each for both heating and cooling and a heat exchanger mode (ECO-Mode).

<table>
<thead>
<tr>
<th>Model</th>
<th>Part Number</th>
<th>Notes</th>
<th>Cool Temp °C</th>
<th>Heat Temp °C</th>
<th>T1-T2 (MAX)</th>
<th>T1-T2 (TYP)</th>
<th>OPERATING VOLTAGE</th>
<th>SWITCHING VOLTAGE</th>
<th>CURRENT AMP</th>
<th>CURRENT AMP</th>
<th>H-BRIDGE RELAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-7F-DC</td>
<td>7F-24G-00-000</td>
<td>24 VDC</td>
<td>35 +/- 3</td>
<td>25 +/- 3</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>24 VDC</td>
<td>24 VDC</td>
<td>20 ADC</td>
<td>N/A</td>
</tr>
<tr>
<td>TC-7F-DC</td>
<td>7F-24D-00-001</td>
<td>24 VDC</td>
<td>35 +/- 3</td>
<td>25 +/- 3</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>24 VDC</td>
<td>24 VDC</td>
<td>20 ADC</td>
<td>Solid State</td>
</tr>
<tr>
<td>TC-7F-DC</td>
<td>7F-24S-00-000</td>
<td>12 VDC</td>
<td>35 +/- 3</td>
<td>25 +/- 3</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>12 VDC</td>
<td>12 VDC</td>
<td>20 ADC</td>
<td>Solid State/Mechanical</td>
</tr>
<tr>
<td>TC-7F-DC</td>
<td>7F-24T-00-000</td>
<td>24 VDC</td>
<td>35 +/- 3</td>
<td>25 +/- 3</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>24 VDC</td>
<td>24 VDC</td>
<td>20 ADC</td>
<td>Solid State/Mechanical</td>
</tr>
<tr>
<td>TC-7F-DC</td>
<td>7F-24U-00-000</td>
<td>48 VDC</td>
<td>35 +/- 3</td>
<td>25 +/- 3</td>
<td>10 +/- 3</td>
<td>6.5</td>
<td>3</td>
<td>48 VDC</td>
<td>48 VDC</td>
<td>20 ADC</td>
<td>Solid State/Mechanical</td>
</tr>
</tbody>
</table>

For custom variations of any of the controls, contact TECA.
LIMITED WARRANTY

In the event a defect in material or workmanship is discovered in any of TECA's products within one year after the date they are delivered to Buyer, and if: (a) TECA is notified of the defect in writing by certified mail within 14 days of the date of discovery; (b) TECA may then either, at its sole discretion, inspect the product at Buyer’s location, or require that the product be made available at Buyer’s expense at TECA's premises for TECA's inspection within 14 days of the date of notification; and (c) the products are defective and the defects result from faulty materials and/or workmanship and not in any way from accident, misuse, misapplication, mishandling, modification, or alteration by the Buyer or the shipper, then TECA shall, at its sole option, repair or exchange defective products free of charge to Buyer, or credit to buyer the price of the defective products. ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE EXCLUDED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TECA BE LIABLE FOR ANY CLAIM BASED UPON BREACH OF EXPRESS OR IMPLIED WARRANTY OR ANY OTHER DAMAGES WHETHER SPECIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOST PROFITS, BUSINESS INTERRUPTION, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

RETURNED GOODS, RESTOCKING CHARGES

In order to return merchandise for any reason (repair, replacement, or credit) a return authorization number must be issued by TECA. New merchandise may not be returned for credit beyond 60 days from shipment. Charges for incidental or other damages may also be made. All returned goods must be sent freight prepaid. A restocking charge of 15% will apply. On special equipment and custom modified equipment orders, additional incremental cancellation charges may be made.